Diese Seite auf Deutsch Home Maria Oelinger
Home Oelinger
sitemap
a – z
Oelinger Home

List of Contents     Rommelfanger     Kacprzyk, Orlovski     Lai, Hwang

Notations and Definitions

Reference function

A function   L:[0, infinite[ —> [0, 1]    is called reference function if it meets the conditions

  • L(0) = 1   and
  • L is not ascending in [0, infinite[

Example: L(u) = Max {0, 1–udelta} with delta > 0 or
   L(u) = exp(-u delta)   with delta > 0 (exponential function).

back to Rommelfanger introduction

 
Fuzzy interval of type LR

A = (a; o; alpha; omega), and

µ A (x) = open brace L((a – x) / alpha) in case x less-than-or-equal a
in case a < x less-than-or-equal o
R((x – o) / omega) in case o < x

back to Rommelfanger introduction

 
Fuzzy number of type LR

A = (a; alphabeta), and

µ A (x) = open brace L((a – x) / alpha) in case x less-than-or-equal a, alpha > 0
R((x – a) / beta) in case a < x, beta > 0

back to Rommelfanger introduction

 
Culmination of a fuzzy number

µ B (a) = 1 = L(0) is culmination of the fuzzy number, alpha, beta are called span.
i=1,…,m; j=1…,n.

back to Rommelfanger introduction  

Link of fuzzy numbers

Fuzzy numbers A = (a; alphabeta) and B = (b; gammadelta) of the same LR type are linked by

  • extended addition

  • (a; alphabeta) xor (b; gammadelta) = (a + b; alpha + gammabeta + delta)
  • extended multiplication
    (a; alphabeta) omultiply (b; gammadelta) = (ab; a gamma + balpha – alpha gamma; adelta + bbeta + betadelta)

back to Rommelfanger introduction

 
epsilon-niveau

Restriction to the epsilon-niveau in order to limit the supporting set after the required additions / multiplications.

back to Rommelfanger introduction

 
S-less-than-or-equal

named after Slowinsky

back to 1.3

 
Optimization model KO1

Optimization model KO1 (No-Fuzzy) going by the way of Kacprzyk and Orlovski:

 z(x) =   Sum j = 1,...,n cj xj     —>   Max

in compliance with the subconditions

 Sum j = 1,...,n aij xj less-than-or-equal bi  i = 1,...,m

 xj more-than-or-equal 0,  j = 1,...,n.

back to 2.1

 
Optimization model LH1

 z(x) =   Sum j = 1,...,n cj xj     —>   Max

in compliance with the subconditions

 Sum j = 1,...,n aij xj less-than-or-equal bi  i = 1,...,m

 xj  more-than-or-equal  0,  j = 1,...,n.

back to 3.1

 

List of Contents     Rommelfanger     Kacprzyk, Orlovski     Lai, Hwang

Feel free to send me email: maria@oelinger.de


© 1999-2001 Maria Oelinger
cand. math.
Fuzzy mathematics
1998
Last Update: 25.04.2001
Address: http://www.oelinger.de/maria/en/fuzzy/definition.htm