Diese Seite auf Deutsch Home Maria Oelinger
Home Oelinger
sitemap
a – z
Oelinger Home

List of Contents     Rommelfanger     2.2     Lai, Hwang     Notations + Definitions

2.Fuzzy optimization by Kacprzyk and Orlovski

2.1 Introduction

2.1.1 Basics

General basis is the optimization model KO1 (No-Fuzzy):

 z(x) =   Sum j = 1,...,n cj xj     —>    Max

in compliance with the subconditions

 Sum j = 1,...,n aij xj less-than-or-equal bi  i = 1,…,m

 xj  more-than-or-equal  0,  j = 1,…,n.

The fuzzification of this problem is realized by "blurring" the demand for maximization of the target function and the demand for the exact compliance with the inequations. Therefore the appreciation in accordance with Zimmermann (1975/76) is outlined:

This was the first attempt to fuzzifize optimization (resp. Linear Programming).
You can transform the optimization model KO1 as followed:

 z(x) =   Sum j = 1,...,n ej xj     —>   Min

in compliance with the subconditions

 Sum j = 1,...,n aij xj less-than-or-equal bi,   i = 1,…,m

xj more-than-or-equal  0,   j = 1,…,n,

obviously ej = –cj applies.

List of Contents     Rommelfanger     2.2     Lai, Hwang     Notations + Definitions

Feel free to send me email: maria@oelinger.de


© 1999-2001 Maria Oelinger
cand. math.
Fuzzy mathematics
1998
Last Update: 25.04.2001
Address: http://www.oelinger.de/maria/en/fuzzy/ko_intro.htm