Diese Seite auf Deutsch Home Maria Oelinger
Home Oelinger
sitemap
a – z
Oelinger Home

List of Contents     1.2     1.3     Kacprzyk, Orlovski     Lai, Hwang     Notations + Definitions

1.Fuzzy optimization by Rommelfanger

1.1 Introduction

1.1.1 Basics

We look at optimazation models of the form

z(x) =  x = c1x1 + … + cnxn    —>   Max

in compliance with the fuzzy restrictions

Ai1x1 xor … xor Ainxn less-than-or-equal Bi        i = 1, …, m

   and

x1, …, xn more-than-or-equal 0.

To simplify matters it should be considered for all coefficients Aij and the right sides Bi in the following, that the reference functions are
L(u) = R(u) = Max {0, 1 – u} .
In general you can use all kinds of reference functions, of course.

Aij = (aij; oijijomegaij)epsilon are fuzzy intervals and
Bi = (bi; 0; betai)epsilon are fuzzy numbers on the epsilon-niveau, epsilon element out ]0, 1].

1.1.2 Example of use

Target function should be

z (x, y) = 4x + 7y    —>   Max

target function (1 KB)

under the subconditions x, y more-than-or-equal 0

(A)     (2; 2; 0.5; 0.5) 0.1 x   xor   (1.5; 2; 0.5; 1) 0.1 y  less-than-or-equal  (20; 0; 8) 0.1

Graph 1 (3 KB)

(B)     (3; 4; 1; 1.5) 0.1 x   xor   (5; 6; 1; 1) 0.1 y  less-than-or-equal  (48; 0; 12) 0.1

Graph 2 (3 KB)

(C)       (2.5; 3; 0.5; 0.4) 0.1 y  less-than-or-equal  (18; 0; 7) 0.1

Graph 3 (3 KB)

List of Contents     1.2     1.3     Kacprzyk, Orlovski     Lai, Hwang     Notations + Definitions

Feel free to send me email: maria@oelinger.de


© 1999-2001 Maria Oelinger
cand. math.
Seminar Fuzzymathematik
1998
Letzte Änderung: 25.04.2001
address: http://www.oelinger.de/maria/en/fuzzy/rommelfanger_intro.htm