Diese Seite auf Deutsch Home Maria Oelinger
Home Oelinger
sitemap
a – z
Oelinger Home

List of Contents     Rommelfanger     Kacprzyk, Orlovski     3.1     Notations + Definitions

3.2 Less-Than-Or-Equal-Relation V-less-than-or-equal

Optimization model LH2

On the basis of the optimization model LH1 we receive the optimizatin model LH2.

 z(x) =   Sum j = 1,...,n cj xj     —> Max

on the condition

 element out Xalpha  := {x = (x1,…,xn) | µi (x) more than or equal alpha,   alpha element out [0, 1]    for all i = 1, ..., m;   xj more than or equal 0}

The affilation functions   µi (x)   are

Then the optimization model LH2 is described as

 z(x) = Sum j = 1,...,ncjxj    —>   Max

on the condition

 Sum j = 1,...,n aijxj V-less-than-or-equal bi + (1 – alpha)betai  i = 1, …, m    and    alpha element out [0, 1]

 xj more-than-or-equal 0,     j = 1, …, n.

The decision-maker sets according to the demand a suitable  alpha  .
Now you can calculate the optimal result with common algorithms.

List of Contents     Rommelfanger     Kacprzyk, Orlovski     3.1     Notations + Definitions

Feel free to send me email: maria@oelinger.de


© 199-2001 Maria Oelinger
cand. math.
Fuzzy mathematics
1998
Last Update: 25.04.2001
Address: http://www.oelinger.de/maria/en/fuzzy/lai_v.htm