Home Maria Oelinger Home Oelinger sitemap a z |
List of Contents 1.1 1.2 Kacprzyk, Orlovski Lai, Hwang Notations + Definitions
Ai (x) = Ai1 x1 Ain xn Bi
Restriction with fuzzy interval A ij = (aij ; oij ; ij ; ij) and fuzzy number Bi = (bi; 0; i) .
For this is equivalent to:
1. aij ijL-1 ()) xj bi + i L-1 (), ], 1] and
2. oij + ij xj bi + i
= 0.1,
= 0.9
z(x, y) = 4x + 7y
> Max
with subconditions
(A) I
:
1.95x + 1.45y
20.8
(A)
I
:
2.5x + 3y
28
(B) II
:
2.9x + 4.9y
49.2
(B)
II
:
5.5x + 7y
60
(C) III
:
2.45y
18.7
(C)
III
:
3.4y
25
x, y 0.
I
=>
x
(20.8 1.45y) / 1.95
=>
x
5.2
I
=>
x
2.38
II
=>
x
4.55
I
=>
x
1.55
=>
x
1.55
III
=>
y
18.7 / 2.45 = 7. 63
III
=>
y
25 / 3.4 = 7.35
=>
y
7.35
This leads to the best possible result:
(x, y) = (1.55; 7.35) and so z(1.55; 7.35) = 57.65
Graph 6: Less-Than-Or-Equal-Relation
For the niveau = 1 you get with
oij xj bi the following result:
I1: | 2 1.55 + 2 7.35 = 17.8 < 20; | µB1 (17.8) = 1 |
II1: | 4 1.55 + 6 7.35 = 50.3 > 48; | µB2 (50.3) = 0.83 |
III1: | 3 7.35 = 22.05 > 18; | µB3 (22.05) = 0.48 |
Here are given borders crossed then.
The decision-maker must consider carefully if he can tolerate it
to this extent.
[µB1
(I1)
to
µB3
(III1)]
List of Contents 1.1 1.2 Kacprzyk, Orlovski Lai, Hwang Notations + Definitions
Feel free to send me email: maria@oelinger.de
© 1999-2001 Maria Oelinger cand. math. |
Fuzzy mathematics 1998 |
Last Update: 25.04.2001 Address: http://www.oelinger.de/maria/en/fuzzy/rommelfanger_s.htm |