Diese Seite auf Deutsch Home Maria Oelinger
Home Oelinger
sitemap
a – z
Oelinger Home

List of Contents     1.1     1.2     Kacprzyk, Orlovski     Lai, Hwang     Notations + Definitions

1.3 Less-Than-Or-Equal-Relation S-less-than-or-equal

General

Ai (x) = Ai1 x1 xor … xor Ain xn less-than-or-equal Bi

Restriction with fuzzy interval A ij = (aij ; oij ; alpha ij ; omega ij) epsilon and fuzzy number Bi = (bi; 0; betai) epsilon .

For     S-less-than-or-equal     this is equivalent to:

     1.     Sum j = 1,...,n  aijalphaijL-1 (rho)) xj less-than-or-equal  bi + betai L-1 (rho),  rho element out ]epsilon, 1]   and

     2.     Sum j = 1,...,n  oij + omegaij xj less-than-or-equal  bi + betai

Example of use

epsilon = 0.1, rho = 0.9
z(x, y) = 4x + 7y    —>   Max

with subconditions

(A)   I rho :       1.95x + 1.45y less-than-or-equal 20.8
(A)   I epsilon :       2.5x + 3y less-than-or-equal 28

(B)   II rho :       2.9x + 4.9y less-than-or-equal 49.2
(B)   II epsilon :       5.5x + 7y less-than-or-equal 60

(C)   III rho :        2.45y less-than-or-equal 18.7
(C)   III epsilon :        3.4y less-than-or-equal 25

 x, y more-than-or-equal 0.

Irho    =>    x less-than-or-equal (20.8 – 1.45y) / 1.95    =>    x less-than-or-equal 5.2
Iepsilon    =>    x less-than-or-equal 2.38

IIepsilon    =>    x less-than-or-equal 4.55
Irho    =>    x less-than-or-equal 1.55
 =>    x less-than-or-equal 1.55

IIIepsilon    =>    y less-than-or-equal 18.7 / 2.45 = 7. 63
IIIrho    =>    y less-than-or-equal 25 / 3.4 = 7.35
 =>    y less-than-or-equal 7.35

This leads to the best possible result:

 (x, y) = (1.55; 7.35)   and so   z(1.55; 7.35) = 57.65

 

Graph 6: S-Less-Than-Or-Equal-Relation

Graph 6: Less-Than-Or-Equal-Relation S-less-than-or-equal

For the niveau    alpha = 1   you get with

Sum j=1, ...n oij xj less-than-or-equal bi    the following result:

I1: 2 • 1.55 + 2 • 7.35 = 17.8 < 20;  µB1 (17.8) = 1
II1: 4 • 1.55 + 6 • 7.35 = 50.3 > 48;  µB2 (50.3) = 0.83
III1: 3 • 7.35 = 22.05 > 18;  µB3 (22.05) = 0.48

Here are given borders crossed then. The decision-maker must consider carefully if he can tolerate it to this extent.
B1 (I1)    to    µB3 (III1)]

List of Contents     1.1     1.2     Kacprzyk, Orlovski     Lai, Hwang     Notations + Definitions

Feel free to send me email: maria@oelinger.de


© 1999-2001 Maria Oelinger
cand. math.
Fuzzy mathematics
1998
Last Update: 25.04.2001
Address: http://www.oelinger.de/maria/en/fuzzy/rommelfanger_s.htm