![]() |
Home Maria Oelinger![]() sitemap a z |
![]() |
List of Contents 1.1 1.2 Kacprzyk, Orlovski Lai, Hwang Notations + Definitions
Ai (x) = Ai1 x1
Ain xn
Bi
Restriction with fuzzy interval
A ij
= (aij
; oij
;
ij
;
ij)
and fuzzy number
Bi
= (bi; 0;
i)
.
For
this is equivalent to:
1.
aij
ijL-1
(
))
xj
bi +
i
L-1 (
),
]
,
1] and
2.
oij +
ij
xj
bi +
i
= 0.1,
= 0.9
z(x, y) = 4x + 7y
> Max
with subconditions
(A) I
:
1.95x + 1.45y
20.8
(A)
I
:
2.5x + 3y
28
(B) II
:
2.9x + 4.9y
49.2
(B)
II
:
5.5x + 7y
60
(C) III
:
2.45y
18.7
(C)
III
:
3.4y
25
x, y
0.
I
=>
x
(20.8 1.45y) / 1.95
=>
x
5.2
I
=>
x
2.38
II
=>
x
4.55
I
=>
x
1.55
=>
x
1.55
III
=>
y
18.7 / 2.45 = 7. 63
III
=>
y
25 / 3.4 = 7.35
=>
y
7.35
This leads to the best possible result:
(x, y) = (1.55; 7.35) and
so z(1.55; 7.35) = 57.65
Graph 6: Less-Than-Or-Equal-Relation
For the niveau
= 1 you get with
oij xj
bi
the following result:
I1: | 2 1.55 + 2 7.35 = 17.8 < 20; |
![]() |
II1: | 4 1.55 + 6 7.35 = 50.3 > 48; |
![]() |
III1: | 3 7.35 = 22.05 > 18; |
![]() |
Here are given borders crossed then.
The decision-maker must consider carefully if he can tolerate it
to this extent.
[µB1
(I1)
to
µB3
(III1)]
List of Contents 1.1 1.2 Kacprzyk, Orlovski Lai, Hwang Notations + Definitions
Feel free to send me email: maria@oelinger.de
© 1999-2001 Maria Oelinger cand. math. |
Fuzzy mathematics 1998 |
Last Update: 25.04.2001 Address: http://www.oelinger.de/maria/en/fuzzy/rommelfanger_s.htm |