Diese Seite auf Deutsch Home Maria Oelinger
Home Oelinger
sitemap
a – z
Oelinger Home

List of Contents     1.1     1.3     Kacprzyk, Orlovski     Lai, Hwang     Notations + Definitions

1.2 Less-Than-Or-Equal-Relation  epsilon-less-than-or-equal

General

Ai1x1 xor … xor Ainxn less-than-or-equal Bi

Restriction with fuzzy interval   A ij = (aij; oijalphaijomegaij) epsilon   and fuzzy number   Bi = (bi; 0; betai) epsilon .

For  epsilon-less-than-or-equal   this is equivalent to:

     1.     Sum j = 1,...,n oj xj = oi1 x1 + … + oin xn less-than-or-equal bi    and

     2.     Sum j = 1,...,n (oij + omegaij) xj = (oi1 + omegai1) x1 + … + (oin + omegain) xn less-than-or-equal bi + betai

Example of use

epsilon = 0.1
z(x, y) = 4x + 7y    —>   Max

with subconditions

(A)   I 1:         2x + 2y less-than-or-equal 20
(A)   I epsilon:       (2 + 0.5)x + (2 + 1)y  less-than-or-equal 20 + 8  <=>  2.5x + 3y less-than-or-equal 28

(B)   II 1:         4x + 6y less-than-or-equal 48
(B)   II epsilon:       5.5x + 7y less-than-or-equal 48 + 12 = 60

(C)   III 1:         0x + 3y less-than-or-equal 18
(C)   III epsilon:       0x + (3 + 0.4)y less-than-or-equal 18 + 7  <=>  3.4y less-than-or-equal 25

 x, y more-than-or-equal 0.

This leads to the best possible result:

 (x, y) = (3; 6)   and so   z(3; 6) = 54

Graph 5: eps-Less-Than-Or-Equal

Graph 5: Less-Than-Or-Equal-Relation epsilon-less-than-or-equal

List of Contents     1.1     1.3     Kacprzyk, Orlovski     Lai, Hwang     Notations + Definitions

Feel free to send me email: maria@oelinger.de


© 1999-2001 Maria Oelinger
cand. math.
Seminar Fuzzymathematik
1998
Letzte Änderung: 25.04.2001
address: http://www.oelinger.de/maria/en/fuzzy/rommelfanger_eps.htm